
Mayam Tasks v3

Programming Guide

Table of Contents

Document Information .. iii
1. Abstract .. 1

1.1. What to expect from this document ... 1
1.2. What You Should Know Before Reading This Manual ... 1

2. Introduction ... 2
2.1. Interfaces ... 2

3. Programming Data Model ... 3
3.1. Top Level Entities and Operations .. 3

3.1.1. Task .. 3
3.1.2. Asset ... 3
3.1.3. BPM Process Instance ... 5

3.2. Static Constructs ... 5
3.2.1. Attribute ... 5
3.2.2. Value Data Types ... 5
3.2.3. Unmanaged Metadata .. 5

3.3. Configurable Entities .. 6
3.3.1. Task List Configuration ... 6
3.3.2. Fields .. 6
3.3.3. Attribute Mapping ... 6

3.4. Further Reading .. 6
4. Java SDK Tutorial .. 7

4.1. Development Environment Setup .. 7
4.1.1. My First Task .. 7

4.2. Managing Tasks .. 8
4.3. Managing Assets ... 11

4.3.1. Unmanaged Metadata (from version 2.4) .. 11
4.4. Managing BPM Process Instances .. 12
4.5. Receiving Events from a Message Queue ... 13
4.6. Calling Site Hooks .. 14

5. Rest API Tutorial ... 15
5.1. Non-Programmatic Access to the API ... 15

5.1.1. My First Task .. 15
5.2. Managing Tasks .. 16
5.3. Managing Assets ... 18
5.4. Managing BPM Process Instances .. 19
5.5. Receiving Events from a Message Queue ... 19

6. Reference Documentation ... 20
6.1. SDK and API Online Reference Documentation .. 20

ii

Document Information
Revision History

Revision Date Author Comment

1.0 Sep. 2018 André Cruz

2.0 Mar. 2023 Ganesh Srinivasson

Contact Information

Mayam AB,

Vikingavägen 2,

182 63 Djursholm

Sweden

Phone: +46 (0)730-808012

E-mail: info@mayam.com1

1 mailto:info@mayam.com

iii

mailto:info@mayam.com
mailto:info@mayam.com

1. Abstract

The Mayam task management system, Mayam Tasks, extends a workflow and/or MAM
environment with advanced task management capabilities and APIs specifically designed for
use with BPM systems.

1.1. What to expect from this document

This document introduces the product by providing an overview of the tasklist GUI, the BPM
interface and other support applications such as the reporing engine. A description of the
system architecture is also provided.

1.2. What You Should Know Before Reading This Manual

This manual describes how to manage the Mayam Tasks environment and the associated
MAM and BPM systems. Hence, relatively deep understanding of the principal functionality
of these systems is required to make adequate use of the functions provided through
the SDK and API covered in this manual. For Mayam Tasks, please refer to the document
Mayam Tasks Technical Reference (found at: http://your-hostname-here:8084/tasksdoc/
tasks_technical_reference.pdf) for information regarding functionality, system architecture,
data model and system configuration (however, the parts regarding installation and
maintenance can be skipped). Refer to MAM system product documentation to familiarize
yourself with the MAM system concepts, data model, security model. A moderate
understanding of the Java language and an appropriate IDE (such as Eclipse) is required for
the SDK portion of the tutorial. A good understanding of HTTP and JSON is required for the REST
portion.

1

http://your-hostname-here:8084/tasksdoc/tasks_technical_reference.pdf
http://your-hostname-here:8084/tasksdoc/tasks_technical_reference.pdf

2. Introduction

The Mayam Tasks application extends the Media Asset Management (MAM) environment
with advanced task management, business process and integration capabilities. Through
the Mayam approach to workflow implementation, workflows in a MAM environment are
provided through the use of a dedicated task and process modelling and execution subsystem,
relying on Mayam Tasks for GUI functions and MAM-independent APIs.

Figure 2.1. Mayam Tasks GUI.

This manual aims to provide the reader with an understanding of the parts of the Mayam
Tasks system that is exposed to third party developers. Basic concepts and terminology will
be described, and then followed by coding tutorials. However, the full SDK and API reference
documentation is not listed in this manual. References to online documentation are listed in
Reference Documentation.

2.1. Interfaces

There are two interfaces covered by this manual. The recommended choice is our Java SDK,
which consists of client classes and domain classes and provides type safe and convenient
programmable access to our system. The second approach is to directly access the REST API
that the SDK sits on top of.

2

3. Programming Data Model

The primary purpose with the Mayam Tasks SDK (and API) is to provide unified high-
level access to workflow data including MAM assets. While the SDK can be used to manage
workflow tasks and MAM assets with a minimum of operations, understanding of the high-
level programming data level is needed to utilize advanced functions. There are three primary
high-level entities:

• Task

• Asset

• BPM process instance

These entities are described below. In addition, other entities such as system configurations
can also be handled. But for now, let’s focus on the primary entities listed below.

3.1. Top Level Entities and Operations

Mayam Tasks chiefly manages Mayam tasks (referred to as Task entities), MAM assets, and
BPM process instances and this is also reflected in our interfaces.

3.1.1. Task

The workflow tasks are understandably the main focus, given the name of our product. A
task is a unit of work to be performed by human and/or machine. Unique numeric identifier
and state are the two required attributes, but the full set is available for use by tasks. Simply
put, the data shown when clicking on a row in the Mayam Tasks GUI is represented by
the Task entity. In addition, a Task entity refers to zero or more Tasks and Assets via key
ID attributes. The SDK provides Task management functions ranging from basic CRUD
functions to advanced search and filter lookup and sub-field level data manipulation (like
adding a comment to a comment log). A number of additional operations like notifications
can also be performed. It is also possible to configure the system to send data change events to
the SDK in case for example key data changes should be propagated to a third-party system.

3.1.2. Asset

The term Asset refers to an Asset managed by Media Asset Management (MAM) system. Using
a type qualifier, most MAM entities such as Series, Programmes, Versions/Items, Packages
and Folders can be represented using an Asset entity. In addition, files not managed by a MAM
can also be described. To assure uniqueness, both asset type and asset identifier is required.
A key property of the Asset and Task processing is that Assets can be connected to tasks,
causing select data to be synchronized between the two. For example, if a Task title attribute
is mapped to the corresponding MAM field, bi-directional data synchronization will occur.
The effect of this mapping scheme is that the SDK user can focus on the high

level data management and leave underlying data synchronization between Tasks and Assets
to the underlying system. Beyond Asset CRUD operations, the Mayam SDK also exposes

3

Programming Data Model

a number of MAM media functions such as media file transfers, transcoding, segment list
management etc.

4

Programming Data Model

3.1.3. BPM Process Instance

Mayam Tasks interacts with a BPM platform as follows:

• Workflow tasks and assets can be managed from the BPM process

• BPM process instances can be managed (create, update/signal and delete) from the Mayam
Tasks GUI and the SDK

• Task and Asset events can be routed to the BPM platform. For example, when a media file is
imported into a MAM asset, Mayam Tasks forwards the has media event. Process instances
use the asset ID as the correlation key and will receive this event without the need for any
explicit coded signalling. From the point of view of Mayam Tasks, a BPM process instance
is a (potentially) long running job, much like a scheduled file transfer. Through the SDK
(and API), BPM process instances can be created, updated and terminated.

3.2. Static Constructs

A driving design principle of Mayam Tasks is to reduce run-time errors by strict data typing
and a predefined set of variables (referred to as Attributes below). Another key principle is
that differences between MAM systems should be kept to a minimum. Both these principles
are supported by representing all top level entities using a fixed set of types attributes.

3.2.1. Attribute

In order to robustly pass both technical data and metadata from one system to another, while
also allow for meaningful presentation within our web application, we have compiled a list
of mappable attributes. Each attribute has a defined purpose (as annotated with @Purpose), a
value class, and a set of constraints. The subjects of create, read, and update operations are in
most cases represented as maps from attribute to value class associated with the respective
attribute. While this is not easily enforced at compile time, the AttributeMap class comes
with an AttributeValidator companion which does this checking at runtime well before any
network traffic is involved..

3.2.2. Value Data Types

For many of our attributes, a set of acceptable values have been collected. In the Java SDK,
these are listed in enums. Only a subset of each is expected to be used per installation, but
the values themselves are documented and generic logic may apply - display rendering or
otherwise.

Some attributes require complex data structures, and classes for these are also provided with
the SDK. Annotated with @Complex, these value classes are limited in their use. Searches, for
example, are rarely supported for complex classes.

3.2.3. Unmanaged Metadata

From version 2.4, there is a special Unmanaged Metadata facility. This facility provides access
to the underlying MAM field metadata in a key/value map without the need for configured
mappings to attributes. The whole collection of Unmanaged Metadata fields can also be
stored in the attribute UNMANAGED_METADATA.

5

Programming Data Model

3.3. Con3gurable Entities

Building upon the foundation of the static constructs, Mayam Tasks is highly configurable.
The dynamic parts are mainly concerned with the presentation of data within our web
application, but a number of the configuration options also have an effect visible for third
party developers.

3.3.1. Task List Con3guration

Each customer installation comes with a factory default that is maintained by Mayam using
a Java DSL. The Task Administration web application can then be used by customer and
integrators to make adjustments. The full configuration is available through the SDK, with
write support exposed through the REST interface; the latter should really only be used to
transfer configuration between systems (such as staging to production).

3.3.2. Fields

As stated above, attributes have statically been assigned purpose, type, and constraints.
Further constraints, along with rendering hints, can be configured using fields. One common
example is the association of a CVL which is either entered directly into the configuration, or
as a reference to a MAM dictionary. It should be noted that these constraints do not have any
effect on operations performed using the SDK or via REST directly. More than one field may
be associated with a particular attribute. This is typically done to allow mandatory access or
use alternative labels in some situations but not others. External use of fields has historically
been limited to label and type use within reporting plugins.

3.3.3. Attribute Mapping

Attributes can be mapped to metadata fields or, for some MAMs, directly to database columns.
This causes changes made to assets to be propagated through message queues and daemons to
any tasks associated with said asset. Changes to mapped attributes in tasks that are associated
with assets will conversely cause those changes to be propagated to the MAM. For a mapping
to be valid, constraints must align. Notably, data types need to be compatible.

3.4. Further Reading

While the configuration of task lists and of mappings between task and MAM data can seem
straightforward at first, the complexity in real world implementation typically lies in the
scope and extent of the configuration. It is not uncommon with 10+ task lists, 100+ fields
and 50+ forms plus mappings to MAM data at 4 levels plus the shared use MAM dictionaries
for configurable drop downs. To be fully effective working with these configurable entities,
a thorough understanding is of the Tasks data model and the Field / Attribute constructs
is required. Beyond reading the Mayam Tasks Technical Reference document, a good idea is
to explore the Task Administration application for some hands-on experience working with
Fields and Attributes.

6

4. Java SDK Tutorial

In this chapter, a tutorial on the Java SDK is provided. The material focuses on a hands-
on experience using a typical development environment to code and run working programs
performing typical task and asset management functions.

4.1. Development Environment Setup

The SDK and all of its runtime dependencies are provided in a single, easy to manage jar file.
This can be downloaded from any server running our web services app. Typical URL is http://
mayam:8084/tasks-ws/. This is also where reference documentation and examples can be
found.

For users of Maven, the dependencies can also be made available as separate artifacts.

Recommended development environment is Eclipse. Configure the build path of your project
to include the external jar downloaded. You are now ready to start coding.

4.1.1. My First Task

The SDK supports automatic dependency injection using Guice, a framework developed by
Google. In our first examples, however, this feature will not be used. Factory methods for the
most commonly needed classes are provided as part of the client.

package com.mayam.wf.ws.client.example.tutorial;
import java.net.URL;
import com.mayam.wf.attributes.shared.Attribute;
import com.mayam.wf.attributes.shared.AttributeMap;
import com.mayam.wf.attributes.shared.type.TaskState;
import com.mayam.wf.ws.client.TasksClient;

public class MyFirstTask {
 public static void main(String [] args) throws Exception {
 final URL baseUrl = new URL("http://localhost:8084/tasks-ws");
 final String apiToken = "test:test";
 final TasksClient client = TasksClient. createTaskClient()

 setup(baseUrl, apiToken, "MyFirstTask", "1.0");
 final AttributeMap task = client. createAttributeMap();
 final String suffix = Long.toString(
 System.currentTimeMillis() / 1000, 26);
 task.setAttribute(Attribute.TASK_LIST_ID, "example");
 task.setAttribute(Attribute.TASK_STATE, TaskState.OPEN);
 task.setAttribute(Attribute.ASSET_TITLE, "MyFirstTask " + suffix);
 final AttributeMap result = client.taskApi().createTask(task);
 final Long taskId = result.getAttribute(Attribute TASK_ID);
 System.out.println("Task created with id " + taskId);
 }
}

For brevity, no error handling is performed. The above code is by no means meant to teach
best practices. Following is a breakdown of the code, top to bottom.

7

http://mayam:8084/tasks-ws/
http://mayam:8084/tasks-ws/

Java SDK Tutorial

There are two variables that may need changing for the examples to run. The baseUrl (line
10) should point to wherever the tasks-ws.war is deployed. Typically, you should only need
to replace localhost with the mayam server name.

The apiToken (line 11) is a pair of account name and secret. Please note that “test” is not
considered secret in a production environment. For the example to work, the token must
be listed in the api.accounts of site-config.properties which can be found under /mayam/
jetty/default/resources/. Mayam Tasks must be restarted for any changes to take effect.

The client itself is created (line 12) by means of the createTaskClient() factory method, after
which it is configured and enabled using setup(). The last two arguments associate the client
with the name and version of our application, allowing the information to be logged with the
server upon connection.

To describe our new task, an AttributeMap is created (line 15) using factory method
createAttributeMap(). It is possible, however highly discouraged to simply create the map
using its default constructor instead. This will disable input validation and may cause other
logic to fail.

When generating tasks or assets, it is always a good name to provide them with unique titles
to keep track of them. As a tip, Base-26 is a nice and simple way to trim down the size of large
numbers like the current epoch time.

For a new task, task list identifier and initial task state are required input. Even though we
are not currently involving an asset, the asset title is often used as the primary title for tasks
and is provided here as an example of optional data. Note that when using setAttribute(), it
is important for the second parameter to exactly match the value class of the attribute.

If you find yourself wanting to convert a non-@Complex value class between its true form and
a String, you can make use of the setAttributeFromString() and getAttributeAsString()
methods. Many other convenient methods are available; the Javadoc is recommended
reading.

The client is divided into a number of different API parts. Creating a task, for example, is done
by accessing the taskApi() and from there the actual createTask() method (line 22). The
resulting map will have the identifier of the newly created task set (line 23). More information
will also have been added, such as timestamps.

4.2. Managing Tasks

Building upon the first example, let’s create a set of ten tasks to play with. We keep the suffix
variable to group them up. We will be discarding the return values of the creates, leaving us
with no access to the identifiers of the tasks for now.

for(int i = 0 ; i < 10 ; i ++) {
 final AttributeMap task = client. createAttributeMap();
 task.setAttribute(Attribute.TASK_LIST_ID, "example");
 task.setAttribute(Attribute.TASK_STATE, TaskState.OPEN);
 task.setAttribute(Attribute.OP_SRC, suffix);
 task.setAttribute(Attribute.ASSET_TITLE, "ManagingTasks " + i + " " + suffix);

8

Java SDK Tutorial

 client.taskApi().createTask(task);
}

The SDK comes with an AttributeMapRandomizer class which can be used
generate random attribute values. Useful for conveniently creating test
tasks.

9

Java SDK Tutorial

final FilterCriteria crit = client.taskApi().createFilterCriteria();
crit.getFilterEqualities().setAttribute(Attribute.TASK_LIST_ID, "example");
crit.getFilterEqualities().setAttribute(Attribute.OP_SRC, suffix);
final FilterResult result = client.taskApi().getTasks(crit, 10, 0);
for(final AttributeMap task : result.getMatches()) {
 final Long taskId = task.getAttribute(Attribute.TASK_ID);
 System.out.println("Task with id " + taskId + " is about to be deleted");
 client.taskApi().deleteTask(taskId);
}

The type safe way of doing searches is by using FilterCriteria. There is also a more powerful/
error prone way which entails expressions that are a subset of ecmascript. Starting off with
a factory call to create the FilterCriteria (line 1), we then access an AttributeMap that
describes equality checks. We set the task list identifier (line 2), which means no tasks from
other tasks lists will be returned.

In order to find all of the tasks we created, we will make use (line 3) of the fact that stored the
suffix in the OP_SRC attribute, which can be searched.

The getTasks() call takes the criteria, the number of requested tasks, and the offset into the
full result set. Together, the two latter parameters allow for pagination. In this case, we happen
to request exactly the amount of tasks that were previously created. Looping over all of the
results (line 5), we then extract the task identifier for use with the deleteTask() call (line 8)
that completely remove each task.

Note that task deletion will not be used extensively in production code. It is much more
useful to close a task by setting its state to one of the closed states. This set of states is
exposed as the constant TaskState.CLOSED_STATES. Examples include FINISHED for when the
task was completed as expected and REJECTED for a task that was likely terminated early on by
a manager (i.e. request denied). Leaving these closed tasks around rather than deleting them
allows for reporting and troubleshooting.

task.setAttribute(Attribute.TASK_STATE, TaskState.FINISHED);
client.taskApi().updateTask(task);

Conveniently, the AttributeMap class has support for automatically flagging values as dirty.
This means that any modifications done between a getTasks() or getTask() call and a call
to updateTask() will become part of the update request, whereas attributes that remained
untouched will not.

10

Java SDK Tutorial

4.3. Managing Assets

Modifying the initial example again, we remove the task code and focus on assets. Depending
on the MAM, the set of supported asset types varies. For testing, we recommend you start with
what we call an item - which usually maps to the same term on the MAM. The item typically
describes a piece of media which may or may not already be ingested and available. Creating
an item is done very much like creating a task.

AttributeMap item = client.createAttributeMap();
item.setAttribute(Attribute.ASSET_TYPE, AssetType.ITEM);
item.setAttribute(Attribute.METADATA_FORM, "example");
item.setAttribute(Attribute.ASSET_TITLE, "ManagingAssets " + suffix);
item = client.assetApi().createAsset(item);
final String assetId = item.getAttribute(Attribute.ASSET_ID);
System.out.println("Item created with id " + assetId);

The required attributes here are the asset type, which we set to item (line 2) and the name
of the metadata form (line 3). The latter may be optional for some combinations of MAM
and asset type. A few attributes, like METADATA_FORM, are mapped directly within each MAM
specific implementation of our generic interface Mambrella. Others need to by manually
mapped in configuration, or passing them will have no effect. The map returned upon
creation (line 6) is likely to contain more information than the map that was posted. Changes
to posted attributes may also have been made.

item.setAttribute(Attribute.CONT_FMT, "XDCAM-HD422");
item = client.assetApi().updateAsset(item);

Updates are, again, very similar. Dirty checking of attribute values applies.

client.assetApi().deleteAsset(AssetType ITEM, assetId);

Since both type and identifier are required for unique identification, both are needed to
request a deletion. Typically, the deletion request is queued, in which case default grace times
and priorities apply.

4.3.1. Unmanaged Metadata (from version 2.4)

MAM level metadata can be read and written using the Unmanaged Metadata construct. An
example is listed below.

UnmanagedMetadata md = client.assetApi().getUnmanagedMetadata(AssetType.ITEM, assetId);
client.assetApi().updateUnmanagedMetadata(AssetType.ITEM, assetId,
 UnmanagedMetadata.builder()
 .set("asset.title", "EXAMPLE " + md.get("example.identity"))
 .subs("asset.contributor", UnmanagedMetadata.builder()
 .set("person.role", "role1.1")
 .set("person.firstName", "Example")
 .set("person.lastName", "von Beispiel"))
 .build()) ;

11

Java SDK Tutorial

4.4. Managing BPM Process Instances

Creating a process instance is very similar to creating a task or an asset. The trick is figuring
out what to put in the AttributeMap and then call the create method. In the case of BPM
integration, we are generally able to push our attributes directly rather than map them to
predefined fields within the target system.

final String id = client.bpmsApi().createProcessInstance("import",
 client.createAttributeMap()
 .setAttribute(Attribute.ASSET_TYPE, AssetType.ITEM)
 .setAttribute(Attribute.ASSET_ID, "urn:example:placeholder1")
 .setAttribute(Attribute.FILE_NAME, "sports-ball.mxf"));
System.out.println("Process instance created with id " + id);

The above example creates an instance of a fictional import process which needs only a file
name for the actual decision making and then causes media to be added to a placeholder item.
The instance identifier is typically stored in the BPMS_INST attribute of the task that initiated
it (if any). The current values of any instance data matching an attribute can be read by calling
getProcessInstanceData().

Next up, we are going to perform a search. Some BPMS specific limitations may apply.

for(final AttributeMap inst : client.bpmsApi().listProcessInstances(
 "import", client.createAttributeMap()
 .setAttribute(Attribute.FILE_NAME, "sports-ball.mxf"))) {
 System.out.println("Active, matching process instance: "
 + inst.getAttributeAsString(Attribute.BPMS_INST));
 }

Instances are always filtered by their process name, but further filtering is also possible. The
map passed is very similar to that of the FilterCritiera.getFilterEqualities(). Any value
set becomes an equality check vs the data stored in active process instances.

client.bpmsApi().updateProcessInstance(
 id, BpmsSignal.PASS, client.createAttributeMap()
 .setAttribute(Attribute.QC_RESULT, "success"));

Updating a process instance requires not only the identifier and the changes to be made, but
also a signal. The signal is used to trigger the process to continue at one or more nodes where
it is currently waiting for an update.

If you feel that the best course of action is to delete a process instance, rather than letting it
run its course and retire on its own, there is a deleteProcessInstance() method available.

12

Java SDK Tutorial

4.5. Receiving Events from a Message Queue

Moving to message queue events, things start to get a bit more involved. While most of the
complexities of JMS have been hidden, there are too many dependencies in play for us to
maintain factory methods like those found in previous examples. If you are not proficient in
the use of Guice, you may want to read up now before proceeding. Below is a new full example.

package com.mayam.wf.ws.client.example.tutorial;

import javax.inject.Inject;

import com.google.inject.Guice;
import com.google.inject.Injector;
import com.mayam.wf.attributes.shared.Attribute;
import com.mayam.wf.mq.Mq;
import com.mayam.wf.mq.Mq.ListenIntensity;
import com.mayam.wf.mq.MqDestination;
import com.mayam.wf.mq.MqMessage;
import com.mayam.wf.mq.MqModule;
import com.mayam.wf.mq.common.ContentTypes;

public class ReceivingEvents {
 public static void main(String [] args) throws Exception {
 final Injector injector = Guice.createInjector(
 new MqModule("ReceivingEvents"));
 injector.getInstance(ReceivingEvents.class).loop();
 }

 @Inject Mq mq;

 public void loop() throws Exception {
 mq.attachListener(MqDestination.of("queue://mayam.task.test") ,
 new Mq.Listener() {
 @Override public void onMessage(MqMessage message) throws Throwable {
 if(message.getType().equals(ContentTypes.ATTRIBUTES)) {
 System.out.println("Got a message related to " + "task/asset with title " +
 message.getSubject().getAttribute(Attribute .ASSET_TITLE));
 }
 }
 });
 while(System.in.available() == 0)
 mq.listen(ListenIntensity.RELAXED);

 mq.shutdownConsumers();
 }
}

A Guice module which binds message queue related dependencies is provided, and used in
the example to create an injector (line 17). The module takes the name of your application
as parameter (line 18) for reasons related to message replay.

An instance of the class is created (line 19), whereupon the mq object will be injected (line
22). Within our loop() method that is called, a message listener is created and registered (line
25). Listeners can be attached to topics or queues.

It is recommended that you create a queue for use with your application and configure Camel,
or whatever routing framework is connected to the message queue, to copy relevant messages

13

Java SDK Tutorial

into your queue. Our Topics class contains the topics to which we post information and, in
most cases, route them to ours on queues, available in the Queues class.

The messages themselves are almost always AttributeMap based when they originate from our
software, in which case we are able to recreate the map (line 32) and extract the information
we need.

In order for the attached listener to trigger, we must actually allow it to listen (line 39).
The ListenIntensity is an abstraction over timeout settings. Generally, go with the relaxed
approach, machine don’t necessarily handle stress better than their human counterparts.

For the purpose of this example, the code will loop until enter is pressed on the console (line
38). Our own code is run almost exclusively in servlets and the loops are set to terminate when
container shutdown is initiated.

Since both consumers and producers of messages have their own threads, a clean shutdown
requires that these too be terminated. The example does not send messages, so only the
consumers need be shut down (line 41).

4.6. Calling Site Hooks

A new function in 2.6 is the ability to call a site hook. A site hook is a locally registered site-
specific function identified by its SITE_ACTIVITY_ID. In addition, an extra call parameter can
be passed in the attribute map as SITE_ACTIVITY_PARAM.

See the code snippet below for an example of how to call the site hook using the Activity API.

result.setAttribute(Attribute.SITE_ACTIVITY_ID, "id_of_site_activity");
result.setAttribute(Attribute.SITE_ACTIVITY_PARAM, "parameter passed to site activity");
// Call the site hook
client.activityApi().performSiteActivity(result);

14

5. Rest API Tutorial

The online API reference is available for browsing at the same location as the SDK downloads
and documentation, the tasks-ws/ of your Mayam server. This section aims to give you a few
pointers to get started.

5.1. Non-Programmatic Access to the API

If you are opting for this path rather than using our SDK, then your language and framework
of choice is unknown to us, which means we are not able to provide you with code examples.
The de facto standard for providing guidance, that we will adhere to, is command-line calls
using the curl client which is readily available for free online.

5.1.1. My First Task

The request and reply bodies are in JSON format, and kept as simple as possible. In the case
of the AttributeMap, some of the values are as complex and not covered in this tutorial but
are described in the online reference. For simple values, their nearest JSON equivalent is used.
Dates take the form of the extended combination of date and time of day described in chapter
5.4 of ISO 8601; more commonly referred to as xs:dateTime since it became popular in XML
documents. Our timestamps will always be sent with a UTC timezone and thus ending with
a Z.

{
 "complete_by_date" : "2015-02-14T10:18:54.467Z",
 "task_list_id" : "ingest",
 "task_state" : "PENDING"
}

Note above that the attribute names are used in lowercase when used as keys for an
AttributeMap in JSON. Any Java enum, including the attributes, will remain uppercase when
used as values (PENDING, line 3).

curl -H 'X-ApiToken: test:test' \
 -X POST -d @ new_task.json \
 -H 'Content-type: application/vnd.mayam.attributemap-v1+json' \
 -H 'Accept: application/vnd.mayam.attributemap-v1+json' \
 'http://localhost:8084/tasks-ws/rest/tasks/'

The API token is passed using the X-ApiToken custom header (line 1), alternatively using the
TasksToken cookie. After setting the method to POST and piping in our JSON file (line 2), we
specify that we are sending (line 3) and receiving (line 4) AttributeMap representations. All
of it is sent off to the tasks resource.

15

Rest API Tutorial

{
 "task_updated_by" : null,
 "task_state" : "PENDING",
 "task_created_by" : null,
 "task_list_id" : "ingest",
 "task_updated_by_system" : "rest:test",
 "complete_by_date" : "2015-02-14T10:18:54.467Z",
 "task_id" : 68039
}

Looking at the JSON sent back, we see that the task was created not by a user (line 2) but by
a REST call (line 6) made by the test account (secret not logged). The identifier is provided of
course (line 8).

5.2. Managing Tasks

Since the reader is now introduced to the JSON representation of attributes, it makes sense
to make use of that knowledge when discussing task filtering. Using the SDK, we made use
of the type safety of FilterCriteria, whereas we are now moving on to the flexibility of the
Ecmascript expressions.

{
 "expression" : "s.TASK_LIST_ID == 'import' && \
 s.COMPLETE_BY_DATE <= now() && s.ASSIGNED_USER == p.USER",
 "expressionObjects" : {
 "p" : {
 "USER" : "sarah"
 }
 }
}

Expression and supporting objects: consider the expression as a question posed in turn to
every task, loaded into the variable s. If the boolean expression evaluates to true, the task is
included in the result set. Obviously, the underlying database access is much more efficient
than that.

The example expression above has three parts, all of which need to be true. The first one will
likely always be present; a task list needs to be specified in all but the most generic reporting
cases.

Although the Ecmascript subset used does not support side effects, basic function support
is available, exemplified here by the now() function that returns the current timestamp
(database time if supported, otherwise server time).

The third one is tricky because it involves a variable named p, which defined in the expression
objects. Instead of writing p.USER we could have written 'sarah'. The point is of course to
have the expression be hard coded into your software and separately pass along anything
dynamic.

curl -H 'X-ApiToken: test:test' \
 -X POST -d @ filter.json \
 -H 'Content-type: application/vnd.mayam.filterexpression-v1+json' \
 -H 'Accept: application/vnd.mayam.attributemap-collection-v1+json' \

16

Rest API Tutorial

 'http://localhost:8084/tasks-ws/rest/tasks/filtered'

The result is a JSON array of the same kind of maps returned by creating a task.

17

Rest API Tutorial

5.3. Managing Assets

The similarities between creating a task and an asset are equally noticeable in the REST API.
To make the following example a bit more interesting, a complex value type was added.

{
"asset_type" : "ITEM" ,
"metadata_form" : "example" ,
"asset_title" : "One great looking item" ,
"asset_site_id" : "12345-one-great-looking-item" ,
"asset_access" : {
 "standard" : [
 {
 "entityType" : "GROUP" ,
 "entity" : "cataloguers" , "read" : true ,
 "write" : true ,
 "admin" : false
 }]
 }
}

Asset type and metadata form are still required, and in case the system is not configured to
produce them itself you may need to provide a site identifier. Titles are generally a good idea
to set.

The complex value chosen for our example is an access control list, ACL, which determines
who gets to do what with the asset about to be created. Somewhat MAM specific, the gist of
this particular ACL is that cataloguers get to read and update catalogue information but not
change access rights or perform media related operations.

curl -H 'X-ApiToken: test:test' \
 -X POST -d @ new_asset.json \
 -H 'Content-type: application/vnd.mayam.attributemap-v1+json' \
 -H 'Accept: application/vnd.mayam.attributemap-v1+json' \
 'http://localhost:8084/tasks-ws/rest/assets/'

The matching curl command line. As with tasks, the result is an AttributeMap representation.

curl -H 'X-ApiToken: test:test' \
 -X DELETE \
 -H 'Accept: application/vnd.mayam.attributemap-v1+json' \
 'http://localhost:8084/tasks-ws/rest/assets/asset-ITEM-123456789'

When deleting, or otherwise referencing an existing asset, both the type and the identifier
need to be specified. In the above example, those are ITEM and 123456789 respectively. Deleting
an asset will first return a copy of it, which is why we specify an Accept header.

18

Rest API Tutorial

When referencing an aspect of an asset, the URL gets more specific. Even more resources and
operations can be found in the reference manual, but the last asset example for this tutorial
will be an uningest - a request to delete the media of an item.

curl -H 'X-ApiToken: test:test' \
 -X DELETE \
 'http://localhost:8084/tasks-ws/rest/assets/asset-ITEM-123456789/media'

5.4. Managing BPM Process Instances

Recreating the process instance creation of the SDK example gives us the following JSON
representation of the attributes.

{
 "asset_type" : "ITEM",
 "asset_id" : "urn:example:placeholder1",
 "file_name" : "sports-ball.mxf"
}

The map is then posted to the server. Note the process-prefix before the process name.

curl -H 'X-ApiToken: test:test' \
 -X POST -d @ new_pi.json \
 -H 'Content-type: application/vnd.mayam.attributemap-v1+json' \
 -H 'Accept: application/vnd.mayam.job-v1+json' \
 'http://localhost:8084/tasks-ws/rest/bpms/process-ingest/'

From the perspective of Mayam Tasks, a process instance is like any other long running job
which is why the instance identifier is passed as a job identifier. In order to retrieve (GET) or
update (UPDATE) data for an instance, or to delete an instance (DELETE), the resource is /bpms/
instance-12345 for instance having the identifier 12345. Note that for updates, the signal is
not part of the query but instead posted as value for the BPMS_SIGNAL attribute.

5.5. Receiving Events from a Message Queue

Event reception from the message queue is not supported in the REST API. To receive task
and asset events, a native interface implementation is required. In most cases, this translates
to implementing a native JMS reader that typically reads messages from Apache ActiveMQ.
Several internet resources exist that provides implementation guidance for the relevant
Message Queue, protocol (JMS/Stomp) and programming language. If you plan to use Java, the
SDK client provides necessary functions for sending and receiving Tasks messages.

19

6. Reference Documentation

For general technical information on Mayam Tasks, refer to the technical reference
manual. This manual is available at: http://your-hostname-here:8084/tasksdoc/
tasks_technical_reference.pdf

6.1. SDK and API Online Reference Documentation

The reference documentation for the Mayam Tasks Java SDK and REST API is available
directly from the service endpoint: http://your-hostname-here:8084/tasks-ws

Please note that the coding examples shown in this manual are also available from this
location.

20

http://your-hostname-here:8084/tasksdoc/tasks_technical_reference.pdf
http://your-hostname-here:8084/tasksdoc/tasks_technical_reference.pdf
http://your-hostname-here:8084/tasks-ws

	Mayam Tasks v3
	Table of Contents
	Document Information
	Chapter 1. Abstract
	1.1. What to expect from this document
	1.2. What You Should Know Before Reading This Manual

	Chapter 2. Introduction
	2.1. Interfaces

	Chapter 3. Programming Data Model
	3.1. Top Level Entities and Operations
	3.1.1. Task
	3.1.2. Asset
	3.1.3. BPM Process Instance

	3.2. Static Constructs
	3.2.1. Attribute
	3.2.2. Value Data Types
	3.2.3. Unmanaged Metadata

	3.3. Configurable Entities
	3.3.1. Task List Configuration
	3.3.2. Fields
	3.3.3. Attribute Mapping

	3.4. Further Reading

	Chapter 4. Java SDK Tutorial
	4.1. Development Environment Setup
	4.1.1. My First Task

	4.2. Managing Tasks
	4.3. Managing Assets
	4.3.1. Unmanaged Metadata (from version 2.4)

	4.4. Managing BPM Process Instances
	4.5. Receiving Events from a Message Queue
	4.6. Calling Site Hooks

	Chapter 5. Rest API Tutorial
	5.1. Non-Programmatic Access to the API
	5.1.1. My First Task

	5.2. Managing Tasks
	5.3. Managing Assets
	5.4. Managing BPM Process Instances
	5.5. Receiving Events from a Message Queue

	Chapter 6. Reference Documentation
	6.1. SDK and API Online Reference Documentation

